(5x^2)/3=9^4

Simple and best practice solution for (5x^2)/3=9^4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x^2)/3=9^4 equation:



(5x^2)/3=9^4
We move all terms to the left:
(5x^2)/3-(9^4)=0
We add all the numbers together, and all the variables
5x^2/3-6561=0
We multiply all the terms by the denominator
5x^2-6561*3=0
We add all the numbers together, and all the variables
5x^2-19683=0
a = 5; b = 0; c = -19683;
Δ = b2-4ac
Δ = 02-4·5·(-19683)
Δ = 393660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{393660}=\sqrt{26244*15}=\sqrt{26244}*\sqrt{15}=162\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-162\sqrt{15}}{2*5}=\frac{0-162\sqrt{15}}{10} =-\frac{162\sqrt{15}}{10} =-\frac{81\sqrt{15}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+162\sqrt{15}}{2*5}=\frac{0+162\sqrt{15}}{10} =\frac{162\sqrt{15}}{10} =\frac{81\sqrt{15}}{5} $

See similar equations:

| 15x+10=12x-8 | | 15y+3=-27 | | x+29+x+123=136 | | 8×-4y=12 | | 9=(4+7a) | | 3.6w+19.7=-2.62 | | 19/14x+4/7=9/7 | | 2x=64. | | 39x=37x+8. | | 44.1=6.7x-2.8 | | 5x+4=2x=1 | | 4(x+2-9=5(x+1) | | x=18x-9=14 | | 1.5y-1.7=y+0.3 | | 110+10x-6=24x+6 | | 3(2–x)=8(x–2) | | 11(4+x)=143 | | 10x-6+110=24x+6 | | 9x+8=4x-2 | | 7=p/12+6 | | 3(y+1)+7/5=5 | | X2+4x+4=81 | | 5+4v=25 | | 5(x,+2)=9x+2-4x+8 | | 8(5-6)=2(2h-4) | | 5x+x+2x-6-2=8+2x+2x | | 4r+6=14-3r | | y=-3(5)+5 | | 5(v+6)+10/10=6 | | 5(v+6)+10÷10=6 | | y=-4(-10)-2 | | 2(3-b)+7=11 |

Equations solver categories